

All-in-One Genome Editing Therapy for the Treatment of Duchenne Muscular Dystrophy

Consortium coordinator: **Prof. Dr. med. Wolfram-Hubertus Zimmermann** Institute of Pharmacology and Toxicology University Medical Center Göttingen

Project Partners: **Prof. Dr. rer. nat. Hildegard Büning** Institute of Experimental Hematology Hannover Medical School

Prof. Dr. vet. med. Rabea Hinkel Laboratory Animal Science Unit German Primate Center

Prof. Dr. med. Bernd Wollnik Institute of Human Genetics University Medical Center Göttingen

Duchenne Muscular Dystrophy (DMD) is a deadly genetically caused disease. Palliative measures (respiratory support, enteral and parenteral nutrition), anti-inflammatory drugs (steroids), and heart failure medication represent the standard-of-care, but do not prevent loss of ambulation and death of DMD patients at a young age. Novel therapeutic approaches. including antisense oligonucleotide-mediated exon skipping, read-through therapeutics and gene supplementation show limited effectiveness. Genome editing is emerging as a new treatment option to convert deadly DMD into a milder or even asymptomatic condition. In a collaborative project, we aim to establish a nonclinical pipeline for patient/exon-tailored genome editing by All-in-One delivery of small CRISPR/Cas9 to skeletal and heart muscle using optimized adeno-associated virus (AAV) vector-mediated transduction. Preliminary experiments demonstrated that CRISPR/Cas9-mediated genome editing can indeed lead to improvement of contractile function. Aligned with obtained regulatory advice, we will advance our most promising genome editing therapy candidate through a nonclinical pipeline of investigations, which includes (1) advanced patient-specific in vitro potency assays, (2) genome safety studies by whole genome sequencing, and (3) pivotal animal studies in non-human primates. AAV-capsid engineering will be explored to enhance muscle delivery, reduce off-target liabilities, and attenuate immunotoxicity. Our strategy will serve as the basis for the conversion of a patient-tailored (n=1) to an off-the-shelf exon-tailored (n>1) therapy, adaptable to most DMD-causing deletions/mutations.